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Abstract 
 Algorithms for computing forces and associated surface deformations from a polygonal data 
set are given, which can be used to haptically and graphically display virtual objects with a single-
point cursor. A culled collision detection algorithm is described that works in real-time with large 
data sets utilizing an oct-tree method. After a collision is detected, forces are created based on the 
local area near the cursor, keeping track of an active polygon. This creates a method that is effective 
and scalable for large models. The ‘Bendable Polygon’ algorithm for visual rendering of computer 
generated surfaces is also given. 

Introduction 
Many of the most common data formats for 3D computer-generated worlds utilize 

polygonal representations for objects. In order to take advantage of the large existing quantity of 
polygonal data sets, and a common standard in environments and hardware acceleration, a 
method for creating haptics forces based on polygons is necessary. The following paper 
describes an algorithm that can be used to create the forces on polygonal objects. The 
ActivePolygon algorithm was implemented with triangular datasets, however the concepts can 
apply to any type of polygonal dataset. 

The algorithm first focuses on determining if the user point, or cursor, has touched an object, 
which requires a collision detection algorithm. A culled collision detection algorithm is described that 
works in real-time with large data sets. Then forces are created based on penetration depth and the 
relative position of the cursor to the object’s facets. Graphically, the Bendable Polygon technique is 
described in which a local area of an object is broken up to allow for small-scale visual deformations. 
Larger scale deformations occur in the haptic domain through a system of springs and dampers. 

Collision Detection 

The first step in creating the forces for an object is to find if the cursor is touching the object. 
This means that as the cursor moves, collisions between the cursor and the object’s facets must be 
checked. After a collision is detected, forces are then determined and presented to the user. 

A simple way to do collision detection is to check if the cursor has moved through any of the 
polygons in an object. This can be accomplished by taking the line segment from the cursor’s current 
and previous positions each loop of the cycle, and comparing that segment with every one of the 
polygons in an object. If the line segment intersects any of the polygons then a collision has occurred. 

This can be extremely time consuming, however, if the object consists of many polygons. It is 
inefficient to check every one of the polygons in an object each cycle of the loop. The process can be 
sped up by pre-processing the data and culling the polygons that are not in the cursor’s vicinity during 



run-time, which allows real-time collision detection even with large data sets. An oct-tree is used to 
subdivide the space around the object. During collision detection, each cycle of the haptic loop all leaf 
nodes which the cursor has moved through are determined (usually this is only the current leaf node) 
and only the polygons within these nodes are checked for collisions. 
 
 

 
Figure 1: oct-tree based culling of a polygonal object. 
Nodes A, B and C are empty, the remaining nodes contain one or both of the polygons. 
 

To populate the oct-tree, first all the polygons are added to a single parent node. This node is 
then divided into eight octants all polygons within the parent are checked for overlapping each child 
octant, and added to the child’s polygon list. Then, each of the octants is divided and it’s polygon list 
transferred to the new children. An octant is not subdivided if contains a minimum number of 
polygons. 

In pre-processing the oct-tree culling data, there are three situations in which a polygon should 
be included in an octant’s checking domain as shown in Figure 2. The first is when any vertices of the 
polygon lie within the octant. The second occurs when any of the edges of the polygon intersect any of 
the sides of the octant’s. The third situation occurs when any of the edges of the octant’s intersect the 
polygon. 
 



 
Figure 2: Voxel-Polygon events. 
Top: 1 or more vertices in the voxel. 
Middle: Polygon edge intersects a voxel side. 
Bottom: Voxel edge intersects the polygon 
 
 
If the tool’s start position in the X direction is larger than its end position, octants are queried from 
right to left, otherwise from left to right. Setting the same checks in Y and Z ensures that the octant that 
will be collided with first is checked first. 

The main consideration in using this type of culling comes from trade-offs in time and memory 
usage. The culling represents a method in which the object’s size can grow to contain many millions of 
polygons, and the algorithm would still be able to do the collision detection in real-time. This would 
require very large amounts of memory, however.  The maximum depth of the oct-tree and the 
maximum number of polygons within a leaf node can be changed to make a trade off between memory 
usage and processing time. 



Force Generation 

After a collision is detected, the forces must be presented. When the cursor touches an object, the 
specific polygon that was initially touched becomes the active polygon. The forces are in the 
normal direction and are proportional to the penetration depth into an object, which is measured 
from the currently active polygon. The direction of the force is interpolated at edges as the cursor 
moves across an object, and as the current polygon changes, to create a smooth feeling across 
facets. When the penetration depth of the active polygon becomes negative, the cursor has left 
the object, the forces are discontinued, and the collision detection algorithm is used again. 

Normal Direction for Polygons 
An initial issue is encountered because of the nature of a polygonal data set. The outward 

direction on a polygon is determined from the ordering of the points it contains. The direction that is 
considered outward is important for both graphics and haptics. In graphics, the outward direction is 
used to determine shading effects. In haptics, the outward direction is used in collision detection, force 
direction, and in interpolating between polygons. 

A typical way to overcome this problem, which has become a standard in graphics, is to pre-
process the points and order them so that all the vertex listings are consistent. If a data set is not 
already vertex-ordered correctly, then enclosed objects can be checked to make sure the outward 
direction remains consistent over a surface. 

To find out if the vertices in any given polygon are ordered correctly, a point, point ‘A’, is 
projected from the center of a polygon in the normal direction of that polygon to a sphere that encloses 
all of the polygonal objects, to give point ‘B’ as shown in Figure 3. 
 

A - arbitrary point in  
current polygon

B, first case. Two 
intersections, so 
the normal was 
pointing out.

B, second case. 
One intersection, 
so the normal 
was pointing in.   
 
Figure 3: Finding if a polygon’s vertices are correctly ordered. 
The two cases of point B represent two different ordering conventions. 
 

Then the number of polygons that are intersected by the segment from point A to point B are 
counted. When objects are enclosed, an even number of intersections implies that the original normal 
was pointing outward and an odd number of intersections means that the normal was pointing inward. 

Determining the Active Polygon and Penetration Depth 
Once a collision is detected, one would then like to be able to slide the cursor from one polygon 

to another to touch the entire object. Several problems arise while trying to do this. First, the active or 



current polygon must always be known so that the direction of the force can be determined. Second, 
while sliding across polygons, if there is a sudden change in magnitude or direction of the normal 
force, then corners feel sharp and distinct even when there is only a slight angle between the adjoining 
polygons. 

Originally, the transition from one polygon to another was accomplished by finding the 
distance from the cursor to the three edges of the polygon's normal projection. If the cursor crossed the 
projection then there would be a new active polygon. The problem with this approach was that the 
distance from the cursor to the current polygon’s surface would change when changing polygons, and a 
small jerk would be felt even when the normal direction was interpolated correctly as shown in Figure 
4a. This is a problem not found in graphics interpolation because a second variable, depth, is included 
in the overall interpolation. Also, the distance to the edge of the plane would change, which is used in 
interpolating the direction of the force. And finally, there can be places within an object that are not in 
any polygon’s projection. 

Therefore, a different method was determined in which the distances to ‘edge’ planes rather 
than the normal planes were found (Figure 4b). An edge plane, for a given edge, is determined from 
the two polygon vertices defining the edge and a vector that is the average of the normals of the 
polygons sharing the edge. 
 

Height before crossing

Height after crossing

Height before crossing

Height after crossing
Edge Plane

(a) (b)  
Figure 4: Determination of a change in the current polygon. 
 

The method shown in Figure 4b makes the penetration depth and distance to the edge planes 
consistent while sliding to another polygon. When a change in the active polygon is detected, the new 
active polygon can be found by finding the other polygon that contains the two vertices in the edge 
plane that was crossed. This information can be preprocessed and stored in an array rather than finding 
it as the cycle runs, which saves on cycle time. 

Force Direction Interpolation 
In addition to consistent depth of penetration distances, the directions of the forces need to be 

consistent to keep the edges smooth. This is accomplished by interpolating between adjoining 
polygons in a way similar to Phong shading in graphics. When the projection of the cursor into the 
active polygon comes within a fixed distance from the edge planes, the normal direction is interpolated 
and then normalized. 
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Figure 5: Interpolation of the normal direction. 
 

The direction at point ‘A’ is interpolated continuously (not necessarily linearly) between 
polygons 1 and 2. At point ‘B’, the normal is interpolated from 4 points, ip1 through ip4, all of which 
are normalized. Ip1 is the normal direction of polygon 1. Ip2 is the average of the normals of polygons 
1 and 5. Ip4 is the average of the normals of polygons 1 and 2. Finally, Ip3 is the average of the 
normals of all five polygons. Care must be taken to make sure the direction is continuous while 
interpolating over boundaries. 

Overall, the interpolation over the edges of the polygons presents an interesting psychophysical 
effect. If the forces are interpolated correctly, then the shape of the object is perceived more from the 
direction of the forces than from the cursor’s actual position. For example, the facets of a polygonal 
sphere are easily distinguishable with no interpolation. With the introduction of interpolation, the 
facets become less noticeable and the sphere feels rounder. As the area over which each facet is 
interpolated increases, until the forces over the entire facet are interpolated, the sphere appears to ‘fill 
out’. Although a user is still feeling a faceted sphere, it appears completely round and smooth. This can 
be a powerful effect as the interpolation can be used to modify the way that an object’s shape is 
perceived. Additionally, if an edge is supposed to be distinct, then the interpolation can be turned off 
which will produce a sharp edge. 

Acute Edges 
If the tool is touching the outside of an acute edge the force will not be interpolated across that edge, 
which will make the edge feel distinct and sharp, rather than curved. The force is interpolated across 
the edge in Figure 6a. The force in Figure 6b is taken from the current polygon only. Additionally, 
there is an issue with acute edges known as the thin-wall problem. This is a common problem in haptic 
rendering algorithms where the cursor can unintentionally push though a thin wall, such as a knife 
blade. To handle this problem in the ActivePolygon algorithm, the edge plane that is normally used to 
transition to a new active polygon, as shown in figure 6a, is not computed or used for acute angles, as 
shown in Figure 6b. 
 



 
Figure 6: Interpolation force for an exterior acute edge. 
 

If the tool is on the inside of a very acute edge it may travel some distance from the 
polygon before approaching the edge plane, which can create inconsistencies in the forces. 
Figure 7 shows a cursor point that has touched an interior edge of an acute angle, and has 
penetrated into the object. 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 7: Interpolation force for an interior acute edge. 
 
The point is within an orthogonal projection of the polygon in Figure 7a, so the force is in the 
polygon’s normal direction. In Figure 7c, the tool has moved outside the polygon’s orthogonal 
projection, so the force is directly towards the edge. At the point where the direction of the force 
changes from the normal direction of the polygon to the edge, as shown in figure 7b, both of 
those computations are equal, thus giving a consistent force. To increase the speed of the 
algorithm, acute edges are marked during pre-processing. 

Three or More Polygons Sharing a Common Edge 
 As has been described, the ActivePolygon algorithm utilizes a local region when 
computing forces. The currently active polygon and the polygons sharing its vertices are used to 
create forces based on a single point. In order to speed up the algorithm, and reduce processing 
time, polygonal neighbors are preprocessed. However, when a single edge is shared by three or 
more polygons, special processing must be done. In this case, the neighbor information is 
dependent on the side of the polygon. When three or more polygons share a common edge, one 
side of a polygon has one neighbor, and the other side of the polygon has another neighbor. If an 
edge has only two polygons attached to it then the front and rear face neighbors are the same. 

(a)  

Edge Plane 

Tool Point 

(b)  (c)  

(a) (b) 

Edge Plane 



The side of the polygon which is currently active will determine which of the two neighbors is 
used for processing. 
 
 
 
 
 
 
 
Figure 8: An edge with three neighbors. 
 
Shown in Figure 8 is an edge that is shared by 4 polygons. Polygon a will have polygon b as a 
front neighbor and polygon d set as a back neighbor. Polygon c will not be a neighbor of a. 

Bendable Polygon Algorithm 
As the forces are presented to the user, the visual aspects of the virtual object must be 

consistent with the object. A compliant object should deform as the cursor moves into it. If the object 
does not deform, then the cursor can be lost visually within it. One way to solve this problem is to 
simply project the visual cursor, in the direction of the force, to the surface of the object. 

However, if the object is very compliant, then this can create a discrepancy between the visual 
and haptic senses. To solve this, the Bendable Polygon technique is used. When the cursor first touches 
a polygon, it is split into 6 different polygons as shown in Figure 9. The cursor is projected normally to 
the plane of the active polygon, and then that point is projected to the edges of the polygon, making 
base points that are the framework for the approach. The ‘edge base points' move as the cursor moves, 
always normally projected to the sides of the current polygon. When the polygons are Gouraud or 
Phong shaded, the edges look smooth and the polygon seems to bend. The effects of the Bendable 
Polygon technique decrease with increased graphical detail, but for relatively large polygons, the effect 
works well and allows for lower levels of detail on a deformable object. 
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Figure 9: Base Points in the Bendable Polygon algorithm. 
 
The cursor is then connected by a spring and a damper to each of the vertices in the active polygon and 
to each of the edge points. The cursor does not have any forces applied to it by these springs. All six of 
those points, in turn are connected to the base points shown in Figure 9, also by springs and dampers. 

b  c  

normal d  

a 



When the cursor moves into a polygon, the vertices (open circles) are pulled away from their 
respective base points (filled circles), making the polygon bend as shown in Figure 10. 
 

 
Figure 10: Base Points and Vertex Points in the Bendable Polygon algorithm. 
 

The dashed lines represent the object while it is not deformed, and the solid lines represent the 
polygons tha t the user sees after it is deformed. As the cursor moves towards an edge, the springs from 
the edge points to their respective base points lose strength, so the indentation in a polygon remains 
consistent even as the cursor moves across different polygons. Different spring constants and different 
levels of strength reduction give different amounts of indentation (i.e. a small indentation on a water 
balloon as opposed to a larger indentation on a trampoline). The springs from the corner vertices to 
their base points work similarly, in that they lose strength as the cursor approaches them, so the 
indentation remains consistent at the corners of the polygons as well. 

Then, each of the vertices throughout the object is connected by springs and dampers to each of 
the vertices touching it, to give an overall ability of large-scale deformation. In large data sets, the 
number of calculations would become extremely large, so springs might, for example, only be 
connected to vertices in the general surrounding area of the cursor, depending on the application, or a 
finite element analysis can determine the object’s deformations. 

Because the edge points split the current polygon, each of the 3 neighboring polygons must be 
split into two polygons as well so that there is no gap (Figure 10). The graphics loop therefore draws 6 
polygons in place of the original, 2 polygons in place of each neighboring polygon, and then draws all 
of the rest of the polygons. 

The graphical material effects are accomplished by finding the normals for each vertex, an 
average of all the normals of the polygons containing that vertex. Then the surface is either Phong or 
Gouraud shaded according to those normals. 

Deformations 
The base points in the polygonal algorithm can be given dynamics properties to allow the deformation 
of an object. This can be accomplished in several ways. Vertices can be given dynamics properties as 
described above in the dynamics section, with a very small time variable. In this way, the vertices 
move slowly and create a feel similar to clay. Additionally, the vertices can be moved with a simpler 



method of simply displacing them proportional to the force presented. This however does not allow as 
much flexibility in modifying the feel of the object. 

There are several issues that arise when the vertices are allowed to move. First, there must be 
some constraints applied to the vertex movements so that a polygon does not collapse on itself. This 
can be done by maintaining a minimum distance for a side on a polygon, or by allow the vertices to 
move in only a specified direction along a line. 

An additional problem comes from the oct-tree based culling which allows real time collision 
detection. If vertices are allowed to move then the pre-processed tree structure, that describes which 
polygon should be checked for collisions given the cursor is in a specific leaf node, can be made 
invalid. 

Results 

The ActivePolygon algorithm was tested on a Dual PIII 800MHZ computer with 512MB of memory, a 
Wildcat 4210 graphics card, and a Phantom desktop haptic device. The haptics load was obtained 
using the GHOST 3.1 Haptic Load program. Object 1 has a complex geometry with many areas that 
are often troublesome. Objects 2 and 3 were the same object and had the same topology, a relatively 
simple topology, but differed only in their resolution and polygon counts. Object 4 had a large polygon 
count. There were several aspects of the results that were significant. First, the haptic load averages 
and peaks were consistent across objects with varying polygon counts. This was expected as the 
computations are based on a pre-processed data set and are computed locally so the overall size does 
not affect the local computations. Second, the haptics were stable across varying and complex 
geometries. Third, the load times increased as the objects had more polygons. This also was expected 
as there was therefore more data to be preprocessed. A majority of the load time is due to the 
preprocessing. After the preprocessing is done once, the preprocessed data can be saved with the 
object, and the load time can be perceptually eliminated. We additionally tested an object with over 1 
million polygons. The haptic load peak occurred when initially touching or leaving that object, but 
maintained a consistent average. 
 
Table 1: ActivePolygon results 

Object Polygons Load Time (sec.) Visual FPS Haptic Load Avg. Haptic Load Peak
1 5706 1.03 21.33 20% 20%
2 

134232 19.54 6.76 15% 20%
3 

239694 33.52 3.8 15% 20%
4 

1063452 195 0.98 15% 80-100%
 



Table 2: Comparison with GHOST polygonal renderer 
Object Polygons Load Time (sec.) Visual FPS Haptic Load Avg. Haptic Load Peak
1 

5706 0.9 15 20% 30%
2 

134232 11.74 6 85% 100%
3 

239694 17.12 6 70% 70%
4 

1063452 220 Unstable haptics
 
We also compared the ActivePolygon algorithm to the TouchVRML polygonal renderer contained in 
the GHOST 3.1 API from SensAble Technologies. The listed TouchVRML Visual Frames Per Second 
are highly qualitative and were obtained by viewing and estimating. In objects 1, 3, and 4 using 
TouchVRML, the phantom would have force kicks in certain manipulation situations. Objects 3 and 4 
had unstable haptics in the TouchVRML application. 
 Overall, the ActivePolygon algorithm worked very well. Further research is being done to 
continue to extend its functionality and scope, add modifications such as haptic textures, and integrate 
it into software applications. The source code for the ActivePolygon algorithm is available in the e-
Touch library on the e-Touch web site, www.etouch3d.org. 
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Dealing with Desktop Gimbal Noise 
 

Karl Reinig  Chris Lee 

Introduction 
The gimbals of the desktop PHANToM introduce considerable noise into the measured 
state of the stylus. When the virtual tool tip is represented by a point located at the origin 
of the gimbal, the noise goes unnoticed. However, when the virtual tool tip is projected 
away from the origin of the gimbal or the tool possesses non-trivial extent such as a ray 
or cylinder, the noise noticeably degrades both the haptic and graphic display of the tool. 
If the tool is being used as a virtual camera, the noise will introduce jitter into the graphic 
display of the virtual environment. This paper discusses some of the problems and work-
arounds, when attempting to filter the noise.  
 
The following figure shows one of the gimbal angles, as reported by the GHOST method 
getGimbalAngles.  
 

 
 
Throughout the one thousand samples, the stylus was resting on a solid surface. The 
resolution of the encoder, approximately .0015 radians or .086 degrees, can be seen in the 
discrete steps of the samples. The graph also shows the noise to be about eight times the 
resolution. 
 
Consider the consequences of projecting the virtual tool ten centimeters from the gimbal 
origin. Ten centimeters times the tangent of .0015 (the gimbal resolution) results in a 
positional resolution of .015 cm. But the noise results in a positional jitter of 
approximately 1.2 mm. This is unacceptable for most applications.    
 



Filtering the Noise 
Creating an optimal filter is not the point of this paper. Instead, we present some of the 
problems we encountered while implementing a simple filter and discuss our current 
work-around. Consider implementing a filter that simply averages the signal by adding 
equally weighted samples and dividing by the number of filter samples. The resulting 
low-pass filter will scale the excursions due to the noise by the inverse of the number of 
filter samples. It will, of course, also degrade the high frequency fidelity of the virtual 
tool. 
 
Let i? be the sample taken i steps before (for example, the current sample would be 0? ). 
Let )(?F  be the result of filtering the i? . 
For our simple filter, 
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In GHOST, the gimbal state is available as the upper 3 x 3 elements of a 4 x 4 transform. 
The most straightforward implementation of the filter would perform the average on each 
of the elements of the 3 x 3 array.  However, this is more than just wasteful since the 
resulting transform would no longer be a rotation matrix. At the very least, you would 
have to renormalize its elements. This is similar to the problem of using matrices to 
represent camera motion.      
 
Ideally you would filter the gimbal noise directly and then use it to form the PHANToM 
transform. Unfortunately, while GHOST does give direct access to the gimbal angles, it 
does not give access to the methods that create the PHANToM transform. Since the 
rotational components of the PHANToM transform contain positional information, this is 
not a trivial transform.  
 
It would be helpful if the GHOST team made a method available to combine gimbal 
angles and position information to create the transform. This is not necessarily 
straightforward since some of the required information probably only exists at the driver 
level. What follows is a less than ideal solution for the interim. 
 
GHOST does make a set of Euler angles available from the PHANToM transform. The 
angles are the rotations about the x, y, and z axes that would put the stylus in its current 
orientation. The Euler angles can be used to recreate the PHANToM transform and are 
therefore candidates for filtering. Unfortunately, the transform that gets the Euler angles 
from the PHANToM transform does not produce a continuous set of Euler angles. There 
are places in which each of the Euler angles jump by 2PI. Since a jump of 2PI about any 
axis has no effect on the orientation, the ambiguity generally goes unnoticed. However, 
the result of filtering an angle that has 2PI jumps is an angle that makes a quick trip 
around the quadrants. This causes completely unacceptable rapid movements in the 
virtual tool. The method described here recognizes the occurrence of a 2PI jump and 
removes it from the current sample. Note that the gimbal angles themselves introduce no 
such ambiguity.  



Implementation 
A brute force implementation of the averaging filter could be accomplished by keeping 
an array of samples. Samples would be added to the array using a cyclic index that runs 
from 0 to n-1. At each time step, the filtered value could be found by summing the 
elements of the array and dividing by its length. If the averaging is to be performed over 
100 steps, each time step would contain the summing of 100 elements.  
 
The summation can be eliminated by developing a recursive implementation. It can be 
shown that the difference between the filtered samples at consecutive times steps is just 
one over the length of the filter times the difference between the current sample and the 
oldest sample. Therefore instead of summing the elements, we need only find the 
difference between the current sample and the oldest sample, scale it by the inverse of the 
number of steps, and add it to the previous filtered value.  
 
To eliminate the problems caused by the 2PI jumps, compare the current sample with the 
previous sample. If the current sample is more than PI larger than the previous sample, 
simply subtract 2PI from the current sample. If the current sample is more than -PI 
smaller than the previous sample, simply add 2PI to the current sample. As long as the 
magnitude of the actual change in the angle is less than PI, there should be no ambiguity.  
 
The PHANToM transform can be constructed from the Euler angles using the following 
matrix, where X, Y, and Z are the first, second, and third elements of the Euler vector. 
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Summary  
The gimbals of the PHANToM desktop introduce unacceptable noise into the state of the 
stylus.  The information required to transform the gimbal angles into a useful PHANToM 
transform are not made available. A solution is to decompose the PHANToM transform 
into Euler angles, filter them (watching for 2PI jumps), and then reconstruct the 
PHANToM transform.  
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Abstract: Many applications that support force feedback make use of a 
haptic device (such as the PHANToM) used for pointing operations, 
combined with a second device, mainly used for navigation (such as a 
3D mouse). In this research we formally assess  the user’s performance 
in a setup in which we use the PHANToM device for camera 
manipulations. This allows us to eliminate the second device and to free 
the user of the mental load to drive two different devices. Additionally, 
when using Sensable’s PHANToM as a camera device, we will look into 
the effect of the additional force feedback.  

1. Introduction 

Most desktop haptic applications consist of a two-device setup. The haptic device, mostly manipulated with the 
dominant hand, is used for pointing and manipulation operations. A second device (typically a 3D mouse) is used for 
navigation operations. 
In the context of our research, very little can be found in literature about integrating forces in camera manipulations. 
In the early 90’s efforts have been made in defining the best navigation metaphor [1] for a certain task in a virtual 
world. Flying vehicle and Scene in hand are the most commonly known. Other work has been done in improving 
navigation and wayfinding methods in virtual environments [2]. In some research systems hand-held miniatures [3] 
or  Speed-coupled Flying [4] are presented to facilitate the user’s interaction.  A usability test by T.G. Anderson [5] 
provides evidence that additional force-feedback results in better performances when compared to the 2D navigation 
interface of CosmoPlayer. In this paper, based on Anderson’s work, we introduce a fairly new variant on the 
“Eyeball in hand” navigation metaphor presented in [1] and focus on the comparison with the LogiCad Space Mouse 
[6]. 
In the next section we explain our “Camera in Hand” metaphor as a variant of the “Eyeball in hand” navigation 
metaphor. Afterwards, the experimental setup used to assess users’ performance when navigating with this metaphor 
is described. The results of the formal evaluation are summarized and discussed. Finally, conclusions with regard to 
the usefulness of the proposed metaphor are formulated. 

 
 

  
 

Fig 1. PHANToM as a camera device 
with virtual guiding plane 

 
Fig 2. Virtual arena in which users 

have to locate the number 



2. Eyeball in Hand/Camera in Hand 

A possible implementation of the eyeball in hand metaphor is to use a Polhemus tracker as a virtual eyeball, which 
can be moved about the virtual scene. However, this manipulation method appeared to imply a confusing mental 
model in which disorientation is a common problem. In former research in our lab the Eyeball In Hand-metaphor has 
been extended to a MicroScribe device [7][8]: by moving the MicroScribe’s stylus with the non-dominant hand, the 
virtual camera is repositioned. By defining the viewpoint in such a manner that it matches the direction of the stylus, 
disorientation will be avoided. As we are not actually handling an eyeball anymore, but rather a pen-like object, we 
will now call this extension the Camera In Hand Metaphor. 
This paper adopts the latter metaphor for the PHANToM haptic device, and extends it by applying additional force-
feedback.  Informal testing taught us to set up a horizontal virtual plane (as shown in fig. 1) as the most useful 
feedback. This allows the user to easily walk forth and back in this plane. When changing the viewpoint’s altitude 
the user has to act against the resistance of the PHANToM. A formal experiment, described below, was set up in 
order to formalize and detail the results obtained by informal testing. 

3. Experimental Setup 

The aim of our research was to formally compare this new metaphor and camera device to another existing 3D 
device. For this comparison condition we have chosen to use the LogiCad SpaceMouse in a “Flying Vehicle” 
metaphor. 
Twenty-two volunteers with mixed experiences in virtual environments participated in the experiment. Most of the 
subjects are in their late twenties or early thirties, although 4 of them were above the age of 40. All subjects were 
right-handed and one third of the population was female.  
All of the participants had to navigate in a virtual arena to locate and read a digit on a red-white coloured object (see 
fig. 2). This test had to be performed in three conditions; each condition consisted of 15 trials. The first condition 
measured performance with the SpaceMouse, the second looked at the PHANToM device without force feedback 
and finally the PHANToM device with force feedback has been tested. To eliminate transfer effects, the order in 
which to take the experiments was counterbalanced. During each trial the elapsed time and the total traveling 
distance had been logged. Finally, at the end of the test a comparative questionnaire had to be filled-up by the 
subjects. We have to note that one of our 22 test persons had trouble in performing the tasks in all conditions. Since 
his results exceeded 12 times the standard deviation, we have omitted those values. 

4. Results 

Chart 1 shows us the median values of the completion times of all subjects, per trial in each condition, which gives 
us a first impression of the results. 

 

 
Chart 1. Completion Time (ms). Median values per trial 

 
In our further analysis1, we consider the first 5 trials for adaptation to the proposed input devices, and so leave them 
out of our computations2. As can be seen from chart 1 and table 1, the average completion time in both PHANToM 
conditions is slightly better than the SpaceMouse. With a P-value of 0.12, there is no significant difference, however.  

                                                                 
1 Using ANOVA 



 
 

Mouse 13333 ms  P-Values  
PHANToM Force 10256 ms  Condition[Mouse-PH no] 0.1231 
PHANToM NoForce 9499 ms  Condition[PH Fo - PH no] 0.8241 

Table 1. Averages and P-values over all subjects 
 

 
Because of the relative heterogeneity of our population, we have divided all subjects in four categories depending on 
their experience in 3D navigation: no, little, much and very much experience. Statistically, the groups with little, 
much and very much experience behave the same. Therefore, in our further analysis, we consider two levels of 
experience: novice (users without any 3D navigation experience) and experienced (all the others). 
If we look at the average completion times in table 2, we can see there’s still no significant difference between any of 
the conditions in the experienced group. However, we now notice a strong significant difference in completion times 
between the SpaceMouse and the PHANToM conditions among the novice users. 

 
  

 Novice Users Experienced Users

Mouse 17263 ms 9760 ms
PHANToM Force 9381 ms 11060 ms
PHANToM NoForce 9007 ms 9941 ms

 

P-Value 
Condition[Mouse-PH no] <.0001 0.4922
Condition[PH Fo - PH no] 0.0507 0.2636

Table 2. Averages and P-values per category 
 

 
A subjective questionnaire, filled up by all subjects after the test, shows us that experienced users significantly prefer 
the SpaceMouse over the PHANToM. On the other hand novice users choose one of both PHANToM conditions. 

 
 

 

 Novice Expert 
Mouse 2 10 
NoForce 5 1 
Force 3 0 

 
Fig. 3. Subjective preference per category 

5. Discussion 

As can be seen from table 2 experienced users objectively do not perform different in one or the other condition. If 
we look at the measurements of the novice users, we see a dramatic improvement when using the PHANToM. 
Compared to the values of the experienced category, we can notice that the values of the novice users using the 
PHANToM condition are similar. This means we can conclude that our Camera In Hand metaphor provides a 
possibility for the inexperienced user to perform equally to their experienced colleagues.  
However we can also conclude that the addition of force-feedback, which implements a horizontal guiding plane, 
doesn’t offer any advantages. There’s even advantage for the no-force condition, though the difference is 
insignificant. 

                                                                                                                                                                                                                  
2 This is supported by our results, as can be seen in chart 1. 



As the performances of the experienced users are similar in all conditions, we have to ask why they collectively 
choose for the SpaceMouse condition. Our experienced users all spend several hours a day on a computer and all 
have their 3D experience playing games with mouse and keyboard. For that reason we suspect those users to have 
certain expectations and so feel more familiar with the SpaceMouse. In addition, some of those users report the 
limited workspace and tiring pose when using the PHANToM as a disadvantage. 

6. Conclusion and future work 

In this work we presented a 3D camera metaphor using the PHANToM device with and without force feedback. This 
metaphor can eliminate the use of a second input device in a haptic setup. The performances of those conditions have 
been measured and compared to the navigation with a SpaceMouse in a formal usability test. As a conclusion we can 
state that, using the PHANToM, novice users act in the same way with the camera in hand metaphor as the 
experienced users. When those users are using the SpaceMouse there is a strong performance penalty. However, 
experienced users mostly choose for the SpaceMouse, while they perform equally in all conditions. Finally, we also 
can conclude that additional force feedback in a sense of an additional guiding plane doesn’t offer any benefits in this 
test. 
We believe the camera in hand metaphor will be of interest to introduce the novice user into 3D environments, but it 
can also be useful when manipulating a scene that is rather centralized in a limited volume. Although additional force 
feedback doesn’t seem to offer any benefits, we think, dependent on the task, additional stability can be obtained by 
finding a appropriate force factor, which is possibly somewhat smaller than the resistance force in our test. 
In our future work, we want to evaluate the effect of additional functionality to step out of the limiting workspace of 
the PHANToM. This can be achieved by e.g. homing the PHANToM without changing the virtual camera, or by 
moving the virtual camera when the users pushes the outer limits of the PHATNoM’s workspace [5].   
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Abstract

Haptic rendering of meshes of arbitrary topology is a difficult and time-consuming process. This
paper presents the use of subdivision surfaces in order to solve this problem. An overview of subdivision
surfaces is given and the algorithms needed to calculate the surface contact point are discussed. We will
show that this algorithm is faster than traditional algorithms.

Introduction and Related Work

Haptic rendering of complex objects needs a lot of calculating power. Even with modern computers, limiting
the number of calculations that need to be made on a complex object can be very difficult. Two approaches
are frequently used: mathematical representations of the objects, and polygonal models. The GHOST SDK
(SensAble, 2001) uses both methods: a mathematical representation is used for simple shapes, such as cubes
and cones, while arbitrary meshes are represented by a polygonal model.

Most of the time, only a limited number of polygons is used in order to keep the calculations within the
1ms interval of the haptics loop. However, this also limits the precision of the model. An alternative is the
use of mathematical representations, such as NURBS. This however introduces other problems: representing
models of arbitrary topology is for instance very difficult.

In our research, we would also like to deform the objects. Using NURBS, the seams of the patchwork can
become visible during deformation. This problem also occurs in computer animation and has been solved
by using subdivision surfaces. A famous example is the Pixar movie “Geri’s Game” (DeRose et al., 1999).

Subdivision Surfaces

A subdivision surface is a surface that is defined as the limit of a series of refinements M1,M2, . . ., starting
from an original control mesh M0. Because of this property, they support level-of-detail. Since they can
also be used to efficiently represent objects of arbitrary topology, and they can be modified easily to support
features such as creases and boundaries, it is no surprise subdivision surfaces are already used in computer
graphics and computer animation. Figure 1 shows a control mesh and the first refinement.

A wide variety of subdivision schemes for surfaces exist, with an equally large variety in properties. Two
of the most well-known subdivision schemes for surfaces are the Catmull-Clark scheme, which works on
quadrilateral meshes, as described in (Catmull and Clark, 1978), and the Loop scheme, which is triangu-
lar (Loop, 1987). The types of surfaces generated by these schemes differ, but the general principles of
subdivision surfaces remain the same. In our research, we use the triangular loop scheme because triangu-
lar polygons are very well suited for modelling freeform surfaces, and they can be easily connected to an
arbitrary configuration . For a detailed explanation of subdivision and subdivision surfaces, we refer the
interested reader to (Zorin and Schröder, 2000).

The Loop scheme, based on the three-dimensional box spline, is an approximating face-split scheme for
triangular meshes, invented by Charles Loop. The resulting surfaces are C2 everywhere except at extraordi-
nary vertices — with a valence different from 6 — where they are C1.



Figure 1: Loop control mesh and first refinement

An iteration of the scheme consists of two stages. In the first stage, known as the splitting stage, a
new vertex is added in the middle of each edge, and both the old and new vertices are connected to form 4
new triangles for each old triangle. In the smoothing stage, all vertices are averaged with their surrounding
vertices. This smoothing step, together with the weights used, is visualized in figure 2. Loop’s original choice
for β was β = 1

k ( 5
8 − ( 3

8 + 1
4cos( 2π

k )2), where k is the valence of the central vertex, but other choices are
possible as well (Warren, 1995). Figure 2 also shows that the support — which is the region over which a
point influences the shape of the limit surface — of the Loop scheme is small and limited.

Figure 2: Subdivision Mask of the Loop Scheme

Calculations using Loop Surfaces

During haptic rendering of polygon meshes, all of the object’s faces generally need to be processed. This
is no longer necessary with subdivision surfaces. The multiresolution properties of subdivision surfaces can
be exploited so that only the control mesh has to be processed as a whole. In the processing stages of the
following, more detailed, subdivision levels, the results of the previous test are used, thus leading to a smaller
number of polygons that have to be processed. This leads to a huge increase in speed.

As mentioned in the previous section, a subdivision surface is defined as the limit of a series of surfaces.
This gives rise to two interesting properties:

• Every face at level n− 1 can be linked to four faces at subdivision level n.

• As can be seen from figure 2, the new co-ordinates of a vertex are influenced by the surrounding
vertices. Using the loop subdivision scheme, most vertices have a valence of 6, so 6 vertices are needed
to calculate the new co-ordinates. Generalizing this for a triangle (figure 3), each vertex of the triangle
is influenced by its 6 neighboring triangles. Since a number of these neighboring triangles are shared,
12 neighboring triangles are needed to calculate the new co-ordinates of each of the triangle’s vertices.
The grey triangle in figure 3 is the triangle that is subdivided.



Figure 3: Area which influences a single triangle

The next two sections explain the 2 problems that need to be solved. In both cases the algorithm starts
from the control mesh at level 0, leading to an accuracy up to an arbitrary subdivision level n, which contains
4n times as much triangles as level 0 does.

Performing the inside-outside test

Consider a control mesh M0, consisting of a triangles. The following steps describe the algorithm that checks
wether a point p lies inside or outside the object.

1. Shoot a semi-infinite ray, starting at point p.

2. Select all the intersected faces and the face closest to the point being tested.

3. Extend this selection by including all triangles in the 1-neighborhoods of all vertices of the intersected
faces.

4. Replace all the selected faces by their subdivided children. The number of triangles is multiplied by 4.
Again test all triangles in this selection for intersection with the ray.

5. Check wether the number of intersections found is different from the previous number. This can happen
because the refined meshes ”shrink” in areas where the control mesh is convex. In concave regions, the
refined meshes grow outside of the control mesh.

If the number has changed, go to step 7, otherwise proceed with step 6.

6. If the required subdivision level is not yet reached, go to step 2.

7. If the number of intersections is odd, the point lies inside the polymesh. Otherwise it lies outside the
polymesh.

Calculating the SCP

Using the results of the previous calculations, the SCP can be calculated.

1. If in the previous algorithm the required subdivion level is found go directly to step 7.

2. Select those faces from the selected faces of the current subdivision level which are closest to the point
being tested.

3. Extend the selection to faces which contain vertices in the 1-neighborhood of all vertices in the selected
faces.

4. Replace the selection with its next subdivision level.



5. Select the closest face from the previous selection.

6. If the required subdivision level is not yet reached, go to step 3.

7. Calculate the exact intersection point of the closest face. This is the SCP.

8. For each vertex of the triangle the limit normal vector is calculated by taking the vector product of
the following two vectors.

t1 =
k−1∑
i=0

cos
2πi

k
pi t2 =

k−1∑
i=0

sin
2πi

k
pi

The normal in the SCP is calculated by interpolating these three normals.

Comparison

Using subdivision surfaces, only a small number of triangles need to be processed. Consider again the control
mesh M0, consisting of a triangles. At level 0 a intersection tests have to be performed. If k intersections are
found (k is typically a very small number), in each step these triangles and their neighboring triangles need to
be subdivided. In the worst case scenario, where the neighboring zones are al disjunct, k∗(1+12)∗4 = k∗52
intersection tests have to be performed for each subdivision level. The maximum number of tests (if the
test is not successful before reaching level n and all zones are always disjunct) is a + n ∗ k ∗ 52 (please note
that the subdivision process is performed in preprocessing stage) . If a “normal” polymesh with the same
number of polygons has to be checked, a ∗ 4n triangles would have to be checked.

For instance, suppose a control mesh, consisting of 100 triangles, is checked until level 4 (a typical level)
and 5 intersections are found. This leads to 100+4 ∗ 5 ∗ 52 = 1140 checks. The equivalent polymesh consists
of a ∗ 44 = 25600 triangles which leads to more than 20 times as much checks.

When using adaptive subdivision, where the fact if a triangle is subdivided depends on the surface area
of the triangle (compared to the other triangles of the mesh), even a smaller number of tests is needed.

Conclusions

We proposed a technique for fast haptic rendering by using subdivision surfaces, which can greatly improve
speed. Also, by using subdivision surfaces, we can evaluate objects of any topology up to an arbitrary
refinement level.
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Figure 1: Scene complexity stability range. 
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Abstract 
     We discuss real-time issues of scene-complexity in order to frame a technical envelope for stable haptic 
applications.  How large a scene can a haptic application support? Specifically, we try to determine the 
largest stable haptic scene possible when GHOST is used to develop an application. The scene consists of a 
number of non-overlapping primitives or polymesh objects. The scene complexity is measured as a number 
of primitive objects or polygons in polymesh objects that allow stable haptic interactions. 
     The initial data collected indicates that earlier versions of GHOST allow for more complex scenes.  
Each later version seems to reduce the number of objects that can be included in a scene.  For example, 
Version 1.2 allows for inclusion of 1100 non-overlapping spheres in a stable haptic application. Version 2.0 
allows only 770 (almost 30% less) such objects, while version 3.0 allows only 600 (almost 45% less). The 
system used for data collection is a Pentium III 500 MHz computer with 256 MB of RAM.  This machine 
has an nVidia Riva TNT2 Ultra video card with 32 MB of memory and runs Windows NT Workstation 4.0 
with Service Pack 6.0. 
     In order to quantify and understand these observations, we have developed an application that estimates 
the distribution of resources used within the haptic loop; the fractions used by collision detection, graphics, 
and haptic processes. This study provides a method for performance analysis of haptic systems.  Scene 
complexity plays a key role in the creation of haptic applications by providing critical data needed to 
estimate the feas ibility and performance limits for generic haptic environments. It thus should have a broad 
impact on the design of haptic applications. 
 
1. Introduction 
      
     Scene complexity is a measurement on how complex a scene can get and still allow for stable  
haptic interactions. The real-time performance is typically reduced in proportion to the increase in 
the complexity of the scene. In fact, it is well known that the time to compute haptic interactions 
increases with the number of polygons. The approach taken in previous work was to make the 
haptic servo loop rate essentially independent of the number of polygons [1].  However, this 
invariance is obtained only after the contact is made with an object and while the object is being 
touched in the neighborhood of the proxy, while the proxy remains inside the object, making this 
an efficient haptic rendering technique for a single polymesh object. In this paper, the scene 
complexity is measured as a number of primitive objects or polygons in polymesh objects. By 
understanding the limits imposed by the complexity of the scene, we can estimate the feasibility 
and performance limitations of generic haptic environments. 
      First, we consider the greatest 
lower bound (GLB), the highest scene 
complexity for which the application 
always runs with stability and no 
errors.  Next we consider the least 
upper bound (LUB), where some 
instability and errors are allowed to 
occur.  When the number of objects is 
between GLB and LUB the application runs some of the times and produces errors or instabilities 
at other times. When the complexity exceeds LUB of the scene, the application produces errors 
instantly after haptics is initialized.  This establishes a scene complexity stability range for haptic 
applications, as shown in Figure 1. 
 



Figure 2: Spheres in a 
3x3x3 (x,y,z) fashion. 

Figure 3: Sample scene graph representation. 

Figure 4: Avg Hload for GHOST v3.0 
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2. Primitive Objects: Spheres and Box complexity tests 
 
     To establish the scene complexity, our application allows a 
tester to specify the number of primitive objects (in the x, y, and 
z directions) in the scene.  The application automatically creates 
and spaces the objects to prevent them from overlapping as 
shown in Figure 2. The use of non-overlapping objects 
eliminates other factors affecting haptic load (hload) [2]. Hload 
is the time required to complete a haptic loop.  Our application 
records the hload data with 10-3 ms precision and stores it in a 
file.  In order to estimate the time distribution of the graphics, 
haptic, and collision detection tasks [3] within the 1 ms haptic 
loop, hload can be measured in several modes: touching (T) or 
not touching (NT) an object, graphics on (G) or off (NG), and 
removing geometry from the haptic scene graph (NH). By 
removing the geometry branch “hapticScene”, as seen in Figure 
3, the geometry can be eliminated from the haptic scene graph.  The NH mode represents the time 
required to perform other duties of the haptic loop, such as the device position query and the 
scene graph traversal, without having to perform any collision detection on the geometry objects 

themselves.   
     The test data was collected five times 
for a combination of modes between G or 
NG, T or NT, and NH (G_T, G_NT, 
NG_T, NG_NT, G_NH, NG_NH). 
Starting with 8 (2x2x2) objects, the 
number of objects is increased by one in 
each direction (e.g. next test has 9(3x3x3) 
objects), until an error is generated for 
exceeding the 1 ms time constraint of the 
haptic duty cycle.  At this stage, the 
number of objects is slowly decreased to 
identify the GLB. Next, the number of 

objects is increased to find the LUB, a point at which the application instantly produces an error. 
     Tests were conducted using three different versions of GHOST (1.2, 2.0, and 3.0) to evaluate 
performance changes from version to version. The GLBs and LUBs for the different versions are 
summarized in Table 1.  The GLB between version 1.2 and 2.0 is reduced by about 30% and 
reduced by another 22% between versions 2.0 and 3.0 for spheres.  Test results for version 3.0 are 
displayed in Figure 4.  From the tests, we calculated that on average displaying graphics 
increased the hload by about 2-5% and touching an object increased it by about 7-18%.  Our test 
results indicate that earlier versions of GHOST allowed for more complex scenes.  Each 

subsequent version reduced 
the number of objects that 
could be included in the 
scene for a stable haptic 
application. The GLB 
between versions 1.2 and 2.0 
is reduced by about 27% and 
is further reduced by 25% 
between versions 2.0 and 3.0 
for boxes.  In general our test 
show that hload increases 



fairly linearly as objects are added to the scene 
graph for every version of GHOST. Clearly, 
overhead was introduced from version to version.  
In case of no graphics and no haptic scene 
(NGNH), the average hloads were .05ms, .08ms, 
and .09ms for versions 1.2, 2.0, and 3.0 
respectively.  The data represents the time 
required to perform basic duties of the haptic loop, 
such as device position query and scene graph 

traversal for nodes other than geometry. 
     The hload percentage for collision detection is about 82-83% for spheres and 89-90% for 
boxes, for graphics it is about 3% for both spheres and boxes, and for touching an object it is 
about 11-13% for spheres and 6-8% for boxes.   
 
3. Polymesh objects complexity tests  
 
     For a single polymesh object, a box made up of length, 
width, and height segments was used.  These segments 
define the resolution of the object and determine the 
number of polygons that form it.  The number of vertices 
(nv) and faces (nf) can be calculated as follows, where l, w, 
and h are the number of length, width, and height segments 
respectively: 
       nv = 2?  [(l+1)(h+1) + (w-1)(h+1) + (w-1)(l-1)] 
       nf = 4?[(l?h) + (w?h) + (w? l)] 
Figure 5 is a wire frame rendering of the box showing how 
the object is made of triangular polygons.  Starting with a 
10x10x10 segment (602 vertices, 1200 polygons) box, the numbers of segments (length, width, 
and height) are increased by 10 for each test.   
Figure 6 displays the average results of five test runs with GHOST version 3.0.  According to 
these results, the hload varied by very little when the polygon count increased for a single object.  
However, when polygon counts exceeded about 120k, GHOST started to produce random errors, 
even though hload was under 0.2ms.  From these results, for a single object with no overlapping 
polygons, we found the GLB and LUB to be 120k and 235k polygons respectively.  

          For multiple polymesh 
objects, the number of 
polygons is kept consistent 
with each increment step in the 
previous test.  Multiple 
10x10x10 segment boxes, each 
containing 1,200 polygons, are 
used to form the polygon count 
for each test run. The vertex 
count was greater in the 
multiple polymesh objects test 
than in the single polymesh 

object test by 2?(N-1) vertices, where N is the number of boxes.  The increase in hload is 
relatively  linear as objects are added to the scene, Figure 7.  Further testing gave the GLB and 
LUB to be 35 objects (42k polygons) and 49 objects (58.8k polygons) for these polymesh objects 
with non-overlapping polygons.  The limit of 1ms was exceeded for 49 objects, therefore not 
allowing for the true value to be recorded.  However, we did notice that with only 35 objects, the 

Version Object GLB LUB 
Box 1100 1188 1.2 
Sphere 1100 1200 
Box 800 847 2.0 
Sphere 770 847 
Box 600 729 3.0 
Sphere 600 729 

Table 1: GLB and LUB for GHOST versions 

Figure 6: Avg test results for increasing polygons for one object 
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Figure 5: Polymesh box 



number of polygons from the single 
polymesh object test was reduced 
from 120k to 42k in the multiple 
polymesh objects test.  Even with an 
additional 78k polygons the 
maximum hload was about 80% 
less.  
     We estimate that on the average, 
collision detection for the polymesh 
objects is about 71-77%, while 
graphics is about 2-8%, and 

touching the object is about 19% of the hload.  Tests also showed that the graphics increased 
hload dependent of the number of polygons.  Touching the polmesh, however, raised hload on 
average by about 26%. 
 
4. Conclusion 
 
     In this paper, we addressed scene complexity issues based on the maximum number of 
primitive objects as well as the maximum number of polygons for single and multiple polymesh 
objects that allow stable haptic interactions when using GHOST.  We discussed the idea of 
specifying a scene complexity stability range.  This range was defined by the greatest lower 
bound (GLB) and the least upper bound (LUB).  GLB is the highest scene complexity for which 
the application always runs with stability and produces no errors.  The LUB is a point at which 
the haptic application will no longer run and produces errors instantly after haptics is initialized.  
When the scene complexity is between GLB and LUB the application runs, but is unstable and 
prone to errors.  We were also able to estimate the percentage of hload used for the collision 
detection, graphics, and user touching an object.   
     Though these initial tests gave us complexity bounds for some haptic applications, more tests 
need to be performed in order to estimate the feasibility and performance expectations for a 
general haptic environment that involves many other levels of complexity.  For example, other 
tests results indicate that hload increases if the point of contact is within multiple bounding boxes 
and increases even more if the point is touching multiple objects.  Tests also show that there can 
be different hloads within a single polymesh object, depending on its topology (eg. corner points, 
overlapping polygons, etc.).  Understanding scene complexity limits plays a key role in creation 
of haptic applications by providing critical data needed to estimate the feasibility and 
performance for generic haptic environments. 
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The West Virginia Virtual Environments Laboratory is studying ways to use virtual environments 
technology to assist users with various disabilities.  One problem of special interest to us is how 
to teach  mathematics to students with vision disabilities.  We are using the PHANToM and 
sonification techniques to display mathematical functions to visually impaired students. 

Rationale 
We agree with Moses and Cobb, "Part of the literacy standard, then, the floor for all students, 
must be this: when you leave middle school, you are ready to engage with the college preparatory 
sequence in high school.   It's a moving target, but however it's defined, it must then be seen as 
another floor: when you leave high school, you must be able to engage college curricula in math 
and science, for full college credit." [1] 

National Science Foundation Director Rita Colwell has said, " Every schoolchild must be 
educated for a productive and contributory place in an advanced information age... K through 12 
is the real challenge. As a start, we begin with the assumption that all children can be educated in 
math and science. This may sound so elementary as to be downright silly! In some places, the 
educational approach is to sift and sort students early-on. This tells some students right at the 
starting gate that they can't master science and math -- that we do not expect them to succeed. 
This becomes a self-fulfilling prophecy, damning to the student and destructive for the country. 
We must believe in all children so that they learn to believe in themselves..." [2] 

Our goal in this project is to help students with disabilities or with different learning styles learn 
pre-calculus so that college majors in science and engineering are available to them.   

Previous Work 
The current project brings together previous work in two areas, use of the PHANToM in 
displaying map information for pre-trip planning by those with visual impairments [3] and 
sonification of complex data sets [4-7].  Our sonification work emphasizes the development of 
algorithms for composing music from complex data sets which will be pleasant to listen to and 
will assist listeners in discovering data relationships which are not otherwise obvious. 

In 2000 we developed a program for the PHANToM which accepts as input a mathematical 
function of one variable and then constructs a haptic model of a solid block on whose front face a 
groove representing the function has been carved. The user types on the computer keyboard to 
enter commands such as those for changing bounds of the domain and range, and the program 
uses spoken feedback to communicate with the user. A important component of our system is a 
compiler written using flex and bison which parses the user's function written in Fortran notation 
[8]. 

Stephen Brewster's group at the University of Glasgow has built a prototype multimodal haptic 
math system and done human factors research with both blind and sighted users. In the 2000 
version of their system functions were provided by the human factors researchers and hard-coded.  



They tested for effectiveness of different values of friction and representation of grid lines.  They 
referenced their own work in sonification, writing, "An effective way of presenting the overview 
of the line graph will shorten the time required in this process and give blind users a better 
understanding about the graph. Using non-speech sound to provide this kind of quick overview 
[is] being investigated." [9] 

Specification of New Prototypes 
In 2001 we extended our prototype haptic math system to add: 

(1) improvement of the user interface, 

(2) display of functions of two variables, and 

(3) sonification of functions of one variable 

Improving User Interface 
The existing version of haptic math provided only the basic functions needed to allow the user to 
enter a function and change some parameters. All input was done via the keyboard and made 
several assumptions to simplify the initial interface. Work this summer focused on identifying 
components required and/or useful in a more complete user interface.  This includes not only the 
listing of these components but consideration as to how best to implement each of them to allow 
the greatest adaptability for users with varying disabilities or learning styles.  

There are two main parts of the user interface: the informational display and the system controls.  

The display part of the interface is concerned with how the function is represented to the user. 
This includes the graphic representation as drawn on the screen, the haptic representation as felt 
via the PHANToM, and the production of any auditory information. In regards to the multi-modal 
'display' there were several issues considered. These included investigation into the way that the 
curve is drawn to provide a more uniform groove width at points with steep or zero slope, 
methods of informing the user (other than visually) of discontinuities in the graphed function and 
providing the user with alternative methods to explore the graph.  

The system control part of the interface is concerned with how the user sets parameters, enters 
functions and in general conveys information to the system.   For the system control part some 
issues considered include variations in the format of the functions that may be entered, the means 
of detecting and informing the user of errors in the function entered, the provision of user access 
to parameters and the ability of the user to selectively alter parts of the multi-modal display to 
adapt to individual needs. The existing version restricts the choices for system control keys to 
those on the left hand. This is an unnecessary and potentially problematic restriction for several 
reasons.  It assumes a right-handed user.  It assumes the traditional 'qwerty' keyboard, a problem 
since other keyboards are used by potential users. Also, it forces some command sequences to be 
rather arbitrary. The restriction is unnecessary as it is not possible on a qwerty keyboard to use 
only left hand sequences to enter characters such as the parentheses needed in the functions 
entered. This also forces the user to memorize the correspondence between keys and parameters - 
a potential problem for a novice user who may not even realize what parameters are available.  It 
would also be desirable for the user to be able to alter the display. For example, a user might find 
the musical representation of the curve distracting and choose to turn it off.  

Display of Functions of Two Variables 
We also developed a new module for displaying functions of two variables. 



First, the visual representation had to be changed. The original one-variable version carves a 
groove in a block of wood, giving a 3-d representation of a 2-d curve. In the case of a function of 
two variables, we are dealing with a 3-d surface. To  obtain this surface, the plane (x,y) is 
triangulated and the z-value of the function is calculated for each triangulation vertex. This 
produces the set of 3-d points (x,y,x) that are used to create the tripoly mesh that PHANToM user 
can "feel." To make the surface easier to explore without falling off the surface, we added a 
bounding box. 

The second change involved modifying the function parser to accommodate functions of two 
variables. This major modification required making changes to the interface between the display 
module and the parser. Additional arguments were needed. Also the type and meaning of one of 
the parameters was changed. The latter change was necessary, because of the precautions taken in 
the previous version against mathematical roundup errors. 

Work remains to be done. Currently the function surface is displayed with the (x,y) plane 
horizontal. Additional display options can be added such as displaying the plane vertically or 
allowing the user to rotate the surface. Also for sighted users the color of the display should be 
changed and lighting added to create shadows.  An artifact of the 2000 system is that the 
expression defining the function is re-parsed for every pair (x,y), with a major loss of efficiency.  
We need to restructure the system so that the function is parsed one time and then evaluated once 
for each (x,y) pair. 

Sonification of Functions of One Variable 
In sonifying functions of one variable we map a function to a line of music, mapping x-
coordinates to time and y-coordinates to pitch. We do this in order to give the student a way of 
remembering the shape of a function in the belief that many students will be better able to 
remember a melody describing the sine function rather than only the muscular sensations of 
tracing it.  We use two different encodings--one using the western chromatic scale and one using 
micropitch--in the belief that melodies based on the familiar scale will be easier to remember but 
that micropitch will give a more accurate representation of a function (since the chromatic scale 
encoding essentially represents continuous functions as step functions).  

Figure 1 shows an example illustrating how we sonify functions of one variable. The music is that 
generated for f(x) = tan(x), for 0 = x = 2 p.   

 

Figure 1. Sonification of Tangent Function 

Continuing Work 
We are now designing a human factors study for testing this PHANToM-based prototype with 
secondary school students and doing preliminary design for some course modules incorporating 
this approach. 
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Abstract
The evolution of modern computer programming

languages comes with the need for the strategies
with which we implement them to change as well.
Fully dynamic and reusable visual and haptic
simulations are now possible given the modular
nature of current programming languages. The new
standards for simulations are dynamic applications
that can load and utilize code modules without
shutting down, and that will almost never require a
complete rebuild for new applications.  Two major
issues we addressed and implemented in pursuit of
this standard are:

 I.  Managing the resources of one machine
II. Dynamic Human Computer Interface (HCI)

This paper discusses the limitations of current
development strategies, and presents the work done
at Sandia National Laboratories to develop an
application that will conform to the new dynamic
standards.

1. Limitations of Current Simulation
Strategies

Current Virtual Reality (VR) simulation strategies
have two major limitations.  First, they do not exceed
the resources of one machine.  The current strategy
for VR simulations of all kinds is to create a
specifically tailored application, from the ground up,
to accomplish a specific goal.  Not only are these
applications designed to simulate only one situation
or event, but, once completed, they cannot be
updated or modified without being completely
recompiled.  There are two main drawbacks to this
development strategy.  The applications, or parts of
them, are difficult to reuse in future work, and the
future simulations must be almost completely re-
written. A number of attempts have been made to
reduce the need for complete program rewrites.  These
come in the form of Application Programming
Interfaces (API’s).

Second, current VR strategies do not support
dynamic Human Computer Interaction (HCI).  HCI has
traditionally been limited to 2-dimensional devices like
mice or keyboards.  When working with a 3-
Dimensional simulation or programming environment,
working with a 2-dimensional input device is counter
intuitive and limiting to the user.  Development in the
field of computer haptics has improved HCI in a
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number of ways, including a much more intuitive
virtual environment.  Computer haptics has great
potential in the VR field, not only for simulation
purposes but for simulation development [1] as well.
Such devices as SensAble Technologies’ Desktop
PHANToM2 [2] provide a user with 6 degrees of
freedom of motion (x, y, z, yaw, pitch, and roll) as well
as 3 degrees of force feedback (x, y, z).  Not only do
haptics devices, such as the PHANToM, allow users
to interact with a computer in 3-dimensions, but they
also allow the computer to interact with the user
physically, in addition to the standard visual
feedback. These devices, being developed into new
APIs, have proven to be intuitive and efficient in the
development and interaction with virtual
environments [1,3].  The improvement of HCI and the
emergence of API’s have increased programming
productivity and reusability, proving a more efficient
and desirable design strategy is becoming possible.

2. A Dynamic Standard

In the past, simulation development has been
limited by the linear nature of early programming
languages, such as Fortran and Cobalt.   Newer
languages, such as C++ and Java, are now object
oriented, encouraging modular code development,
and support for greater code reusability.  The modular
nature of current programming languages lends itself
well to a new strategy for VR and application design.

One of the limitations, needing to be addressed,
of current VR strategies is the lack of reusability.
Extremely powerful and impressive applications and
simulations have been developed as single use
applications.  Therefore, these program’s
contributions to their fields are static.  They cannot
be easily modified to perform different tasks, nor can
they be easily disassembled and applied directly to
another application.  Current computer hardware and
software technology make possible a number of
improvements to VR development strategies,
including the ability to manage the resources of a
machine through dynamic loading.

Simulations can now be designed in a modular
nature that allows for dynamic scalability and
reusability.  The new standard for VR development
should be multiple use applications that can
dynamically load new features without recompilation.
Current API’s should be designed in this manner to
increase productivity and reusability.  The primary
benefit of a new dynamic standard is the reusability

and expandability that will allow for more robust and
extensive simulations than ever before.  Dynamically
loadable modules can also enable the simulations to
be run on a much larger range of machines, since
users can dynamically customize the resolution, or
complexity, of the application before or during
execution.  People using the simulation will only load
the modules they need or can support with their
machine. This strategy will also enable a large number
of people to develop VR simulations without being
programming or design experts.

The second improvement to current VR
development strategies that we worked with lies in
HCI.  One limitation of current HCI is that, for the
most part, it is limited to a single user with a static
user interface.  Currently, the means by which users
interact with their virtual environments do not change
with data needs. Therefore, in order to maximize the
breadth of an application, all conceivable features are
loaded upon execution, a method that will quickly
exceed system resources.   Our implementation of a
dynamic HCI includes the ability to dynamically
change the way that one can interact with one’s
simulation environment by using a series of dynamic
menus that can be developed during runtime.  The
ability for multiple users to work collaboratively over
a network in a Virtual Collaborative Environment
(VCE) would also be extremely valuable, and has
limitless potential.  Productivity and quality of
products will be increased as designers and
customers collaboratively design in a VCE, even if
they are hundreds of miles apart.

3. An Implementation Example

3.1 Overview

An initial attempt to implement the new standards
of VR development, as stated above, has commenced
at Sandia National Laboratories’ Interaction Lab.  The
basic methods and strategies used are applicable to
more general cases of VR development.  It should be
noted that the machines used in development were
little more than commercial-off-the-shelf PC systems,
readily available to most individuals interested in the
new wave of VR development.  Novint Technologies’
e-Touch3 was used as a basis for haptics development
with Sensable Technologies’ Desktop PHANToM

                                                
3 e-Touch is a registered trademark of Novint Technologies, Inc.
   http://www.etouch3d.org
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device.   Novint is an internet spin-off company, from
the Sandia National Laboratories’ Interaction Lab.  e-
Touch is an open module effort to provide a 3D
application programming interface as well as a
graphic/haptic user interface (GHUI) to the internet
community.

The project is tailored towards an architectural
design application.  However, since the project is
meant to implement the new standards for haptics and
visual simulations, the application area goes far
beyond a simple CAD program.  At the core of the
project is the need to manage the resources of a
machine, to dynamically add features, ranging from
rendered objects to new modules of code, without
having to exit the application.  Other goals include
improving our HCI by supporting multiple users,
working collaboratively across a network, using
dynamically changing tools and interfaces.

3.2 Basic Structure

The application structure breaks down into three
major categories: objects, tools, and commands.
Objects are graphic and/or haptic items that can be
dynamically added, removed, and manipulated within
the simulation.  Tools enable a user to interact with
one’s environment and with the objects therein.  The
tools, except for a select few default tools, and all

objects are designed to be independent code modules
that can be dynamically loaded upon request.
Commands are code modules that are used to
interface objects and tools with the foundation of the
application.

To support expandability and dynamic loading of
different features, a series of base or template classes
exist within the foundation of the application.  New
objects, tools, and commands can then be derived
from these classes, providing expandability and
compatibility.  This structure also enables novice
users to implement basic features and provides
advanced users with the ability to overload the base
implementation and create unique and complex
additions to the simulation.  Objects and tools are
also designed in a way that they depend only on the
lowest level of our API, Novint’s e-Touch.  Command
modules are used to interface them with specific
applications.  Therefore, the same objects and tools

can be reused in an infinite array of e-Touch based
applications by simply swapping out their command
modules.

Chart 1 shows the basic structure of our
application.  The foundation classes consist of,
essentially, the groundwork for objects, menus, and
tools.   An object is defined as anything rendered
with either graphics, haptics, or both.  For our
purposes in the architectural application, objects are

Chart 1. Shows the design structure of the application.
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created to use both styles of rendering.  Tools are
usually represented by a 3D cursor, which is directly
controlled by the PHANToM for input. Tools are
used to alter the state of the application by adding,
copying, deleting, and in other ways manipulating an
object.  Tools generally manipulate or change some
property of an object.  Menus are completely three
dimensional, and contain 3D objects, such as buttons,
sliders, and knobs.  An explanation of the menuing
system can be found in section 3.4 Menus.

At this point, it should be noted that this
project’s system of combining graphical and haptic
representations of objects did not require the
redevelopment of 3D modeling applications.  The aim
is not to replace existing, proven, and refined
applications, but rather to address a new method of
efficient development that can use and improve upon
existing programs.  The graphical nature of objects is
still designed using more specific, existing,
applications.  The project currently uses imported 3D
Studio Max4 files to create the graphics for our haptic
objects, and contains a framework for converting
other types of 3D object files into data that can be
used by the application.  Using these pre-designed
graphics, a haptic representation is either specifically
defined or generally applied based on a series of
parameters, yielding a completed haptic object.

An important concern with any system that
combines haptics and graphics data is the need for an
on disk storage system that also ties these two

                                                
4 3D Studio Max is a registered trademark of Autodesk, Inc.

representations together.  This can be accomplished
through the use of a common file format that stores
both object depictions in a single file.  Such a format
would allow even the most novice users to create
simple objects, while more advanced and
knowledgeable users would still be able to create the
complex, individualized, and ornate objects they
require.

3.3 Tools

 Our application provides a dynamic and 3D
GHUI.  A series of default tools allow users to interact
with their environment instantly in several basic
ways, while a series of 3D menus dynamically
reconfigure themselves to incorporate new tools
during runtime.  Image 1 shows an object being
resized using one of the applications default tools.
Image 2 shows the default property manipulation
tool.  Without any additions to the applications,
default tools enable users to add, delete, resize, and
manipulate object properties, while still possessing
the ability for custom tools to be loaded in at anytime
for customized interaction.  This system increases
productivity, decreases lost time, and allows for a
more robust and overall user-friendly application. The
range of properties that can be manipulated is also
dynamic, allowing users to specify unique properties
that they wish to change for only select types of

Image 1. Shows an object being dynamically resized using the default resize tool.
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objects.  Currently, the application enables
manipulation of both the size and color scheme of an
object while the program is running.

In a system that allows for real-time extendibility,
it is necessary for applications to make use of
dynamic tools, and dynamic menus to interface with
these tools.  It is imperative for various methods of
interacting with the virtual environment to be added
as required.  This interaction should also be able to
take place in a way never imagined by the initial
developers of the system, and should not be limited
to any basic, underlying, and restricting subsystem.

A method for completing such a task has been
implemented for this project.  Several tools have been
added without restructuring or altering the foundation
of the application.  An example of this is a grouping
tool, which allows users to group together any
number of objects.  Then, any change made to an

object in a group is applied to all other objects in that
same group.  Such tools are derived off a base tool
class, which contains only those properties common
to all tools, and a means to interface with e-Touch.
They are independent of the foundation application,
and are only specific to the very general object type
that is used throughout the application. This proves
the ability of the application, but more importantly,
the new standard of development, to allow for the

kind of extendibility warranted and required by such
an ambitious project.
3.4 Menus

A menu system is another aspect of this project.
An important part of this feature is the three
dimensional nature of the menus, whose basic
implementation is in the e-Touch API.  Although
visually similar to older windowing systems, giving
them a sense of familiarity, these menus are quickly
realized to be much more functional than their 2D
counterparts.  Menu objects, such as buttons and
sliders, are also in 3D.  Using the PHANToM haptic
device, sliders are moved, buttons are clicked, or
knobs are turned to adjust aspects of an object.  This
is a very powerful feature when coupled with a device
such as the PHANToM, as buttons and other objects
have a physical response when they are activated.

Users can feel 3D buttons being pushed, similar to
their real world equivalents, such as the buttons on a
telephone.  A particularly useful example is the 3D
slider used for changing the color of an object.  A
wire frame cube is used to represent all available
colors.  The slider can be positioned by the user at
any point in the cube, and the object’s color is
determined by the slider’s location, see Image 2.

Image 2. Shows an object’s color property being manipulated using the default properties
tool and it’s corresponding dynamic menu.
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As our particular application strives to exceed the
resources of a single machine, which basically means
it needs to be expandable at runtime, a dynamic
menuing system was built on top of a set of default,
foundation menus.  An application area where users
are able to easily add a variety of objects to the
simulation is needed.  This is accomplished by way of
a menu system that recognizes the addition of new
objects and enables their use.  Specifically, a
particular folder in the application directory has been
set aside for storage of objects the program may use.
When a user decides to add an object, this directory
is scanned for subfolders, which are presented as
buttons on an object adding toolbar.  When a button
on this toolbar is pressed, a corresponding directory
is scanned, and, dynamically, a new object selection
menu is built.  Users then choose which object they
wish to add by pressing any of the buttons on the
menu.  The menu is destroyed when closed, allowing
for new source files for objects to be added to the
program directory at runtime. These objects will then

be represented in the menus the next time an object is
to be added.  The menuing system is depicted in
Image 3.  Currently, the project has a dynamic menu
that recognizes the addition of new objects using a
general haptic object file format and allows the user to

use new objects without halting program execution.
The goal of dynamic loading without shutting down
is aimed toward being able to access features from the
internet dynamically.

3.5 Lessons Learned

Developing an application that conforms to the
new standard for visual and haptic development has
not been a small task.  Although modular
programming languages allow programmers to write
code that maintains a structure that can support
dynamic loading, there is not currently a good
program that allows for dynamic loading of code
modules.  The most promising is a program called
Bamboo [6].  Other options include placing code
modules within dll’s (dynamic linking libraries).  This
enables both dynamic linking, adding code at the start
of execution, and dynamic loading, adding code
during execution.

In order to improve current HCI, we were working
with SensAble Technologies’ Desktop PHANToM.
During our work we discovered several limitations of
the current haptic technology.   For example, a limited
range of motion potentially requires scaling of the

Image 3. Shows a number of dynamic menus that make up our unique HCI.
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device motion.  Other recognized haptics needs
involve a standard format for object property
definition.  Since graphics and haptics are produced
by different output devices, a monitor versus a
PHANToM, they have always been treated as two
separate entities.  Creating a standard format for
haptic object information is a necessary step in the
development and continuation of the computer
haptics field.  A behavior constraint library that can
be referenced and used to define behaviors and
characteristics of specific objects is one promising
approach to a common file format.  Investigation and
communication with the haptics community at large is
required for this format to be as inclusive and useful
as possible.

 Issues to consider regarding supporting multiple
users to improve and develop HCI include, but are not
limited to, network latency and the effects it has on
force feedback[5,6], and platform independence.
Haptics is difficult to successfully perform over a
network due to the high refresh rates and the
subsequent and inherent sensitivity of such
simulations.  Also, because of the complicated nature
of haptics, threads are inexorably an integral part of
any simulation.  Due to the often platform specific
nature of threads, this is a complex and inevitable
problem encountered with networking individuals
using various system configurations.  In our goal for
reusable and modular code, platform independence is
an important obstacle to overcome.

4. Conclusions

Given the evolution of programming languages
and techniques, it is possible for more efficient and
productive VR applications to be designed.  It is now
possible to exceed the resources of one’s machine
and to improve and develop current HCI methods.
Specifically, multiple use, multiple user simulations
that are composed of dynamically loadable modules,
have become a reality and present a bright future for
VR development and expansion.

An architectural design application based on and
implementing the concepts and ideas presented in
this paper is currently under development at Sandia
National Laboratories.  The foundation of the

application has been completed utilizing Novint
Technologies’ haptics API e-Touch.  We have been
successful in importing various unique objects from
3D Studio Max files into our simulation, and are able
to manipulate their location, orientation, and physical
properties dynamically with a number of tools that
have been written into the application foundation.
The modular, and eventually dynamically loadable,
structure of our application has also been verified
using several independent tool modules that
successfully interact with objects inside the
simulation.

The work at Sandia National Laboratories already
shows great potential for the full implementation of
the ambitious VR standards set forth in this paper.
Dynamically expandable, multiple user simulations
with a high degree of reusability are on the threshold
of reality, and are the future of VR design and
development.
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